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Summary

Diabetes has been recognized as an important risk factor for a variety of

intracellular bacterial infections, but research into the dysregulated

immune mechanisms contributing to the impaired host–pathogen interac-

tions is in its infancy. Diabetes is characterized by a chronic state of low-

grade inflammation due to activation of pro-inflammatory mediators and

increased formation of advanced glycation end products. Increased oxida-

tive stress also exacerbates the chronic inflammatory processes observed

in diabetes. The reduced phagocytic and antibacterial activity of neutroph-

ils and macrophages provides an intracellular niche for the pathogen to

replicate. Phagocytic and antibacterial dysfunction may be mediated

directly through altered glucose metabolism and oxidative stress. Further-

more, impaired activation of natural killer cells contributes to decreased

levels of interferon-c, required for promoting macrophage antibacterial

mechanisms. Together with impaired dendritic cell function, this impedes

timely activation of adaptive immune responses. Increased intracellular

oxidation of antigen-presenting cells in individuals with diabetes alters the

cytokine profile generated and the subsequent balance of T-cell immunity.

The establishment of acute intracellular bacterial infections in the diabetic

host is associated with impaired T-cell-mediated immune responses. Con-

comitant to the greater intracellular bacterial burden and potential cumu-

lative effect of chronic inflammatory processes, late hyper-inflammatory

cytokine responses are often observed in individuals with diabetes, con-

tributing to systemic pathology. The convergence of intracellular bacterial

infections and diabetes poses new challenges for immunologists, providing

the impetus for multidisciplinary research.
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Introduction

Global socio-economic changes over the last half century

have been met with an unprecedented increase in non-

communicable diseases such as diabetes.1 According to

the most recent statistics from the International Diabetes

Federation, the global prevalence of diabetes reached

382 million in 2013 and is predicted to escalate to

592 million by 2035.2 Approximately 85–95% of the glo-

bal prevalence of diabetes is attributed to type 2 diabetes.2

Although the rising incidence of diabetes is widely recog-

nized in high-income countries, approximately 80% of

Abbreviations: AGE, advanced glycation end products; APC, antigen-presenting cells; CCL, chemokine CC motif ligand; CRP,
C-reactive protein; CTL, cytotoxic T cells; CXCL, chemokine C-X-C motif ligand; CXCR, chemokine C-X-C motif receptor; DC,
dendritic cells; FFA, free fatty acids; GM-CSF, granulocyte–macrophage colony-stimulating factor; GSH, reduced glutathione;
GSSG, oxidized glutathione; ICAM-1, intercellular adhesion molecule 1; IFN, interferon; IL, interleukin; iNOS, inducible nitric
oxide synthase; IR, insulin resistance; NADPH, nicotinamide adenine dinucleotide phosphate; NK, natural killer; NO, nitric
oxide; NOx, mono-nitrogen oxides; ROS, reactive oxygen species; TGF, transforming growth factor; Th, T-helper; TNF, tumour
necrosis factor; VCAM-1, vascular cell adhesion molecule 1
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people with diabetes currently live in low- and middle-

income countries, with the largest increases also predicted

to occur in these regions.2 This has significant public

health and economic implications, given the concurrent

high prevalence of infectious diseases and already limited

healthcare availability. The convergence of communicable

and non-communicable diseases and heightened morbid-

ity and mortality associated with co-morbid disease, raises

significant issues regarding infection control and the re-

emergence of intracellular bacterial infections.

Diabetes is associated with an increased risk of infec-

tious diseases and their complications, including an aver-

age twofold higher risk of mortality compared with non-

diabetic individuals.3 Combatting this double burden is

challenging given that the mechanisms underlying the

increased susceptibility of individuals with diabetes

remain ill-defined. Despite renewed research interest over

the past decade, findings have been inconsistent, with

reports of altered phagocyte function and either aug-

mented, attenuated or unchanged cytokine responses to

infection in association with diabetes.4–8 The immunolog-

ical basis for the synergy between diabetes and intracellu-

lar bacterial infections warrants further investigation.

Here we review the current clinical and experimental evi-

dence of immunological alterations associated with diabe-

tes and their putative role in the increased susceptibility

to intracellular bacterial infections.

Intracellular bacterial infections associated with
diabetes

The increased incidence of intracellular bacterial infec-

tions is one of many complications associated with dia-

betes. A clear link between tuberculosis and diabetes has

been documented in several cohort studies.9–12 Tubercu-

losis is the most significant cause of death globally from

an intracellular bacterial infection and an estimated

one-third of the global population is currently infected

with the causative pathogen, Mycobacterium tuberculo-

sis.13 Data from a recent prospective study indicated

that individuals with diabetes have a threefold higher

risk of developing tuberculosis and at least 10–35% of

patients with tuberculosis have co-morbid diabetes

(Table 1).14

The important tropical infection, melioidosis, is also

closely linked to diabetes. Melioidosis, caused by the

intracellular bacterial pathogen Burkholderia pseudomallei,

is a significant cause of morbidity and mortality in north-

ern Australia and Southeast Asia.15,16 In northeast Thai-

land, melioidosis is the third most common cause of

death from an infectious disease.16 Although less preva-

lent than tuberculosis, melioidosis remains under-

reported due to inherent difficulties in diagnosis and lim-

ited availability of diagnostic facilities in resource-poor

regions of endemnicity.16 For this reason, it is likely that

reported cases represent just the ‘tip of the iceberg’. Meli-

oidosis exhibits one of the strongest associations with dia-

betes, which has been consistently reported as the most

significant risk factor (Table 1).15 Diabetes is observed in

up to 76% of patients with melioidosis in some

regions.15,17,18

Diabetes presents new clinical challenges in the control

of intracellular bacterial infections. Epidemiological stud-

ies have documented an association between diabetes and

the severity of clinical presentations and outcomes from

both tuberculosis and melioidosis.15,18–21 The majority of

immunocompetent hosts infected with M. tuberculosis

develop latent infections (Fig. 1), characterized by a

robust immune response that limits bacterial growth and

tissue damage to prevent development of active disease.

The transition from latent to active infection is highly

dependent on the immune status of the host. Increased

mortality has been described in patients with tuberculosis

and co-morbid diabetes (Fig. 1). There is clinical evidence

that patients with tuberculosis and co-morbid diabetes

are more likely to have cavitary lung lesions and experi-

ence a fourfold increased rate of relapse compared with

patients without risk factors (Fig. 1).19,22 While there are

conflicting reports of a direct correlation between diabetes

and increased mortality in patients with melioidosis, dia-

betes is a strong risk factor for acute bacteraemia and

relapse.15,23,24

Protective host immunity to intracellular bacterial

infections relies on the appropriate timing and function

Table 1. Significant association of tuberculosis and melioidosis with diabetes

Pathogen

Annual incidence

(cases per 100 000)

Relative risk1

Diabetes prevalence

in infected patients (%)

Population at

risk (millions)2 ReferencesInfection Mortality

Mycobacterium

tuberculosis

122 3 5 10–35 382 2,13,19–21,31,33,118,140–142

Burkholderia

pseudomallei

13–20 13 1�2 39–76 238 15,16,143–145

1Relative risk of infection and death from infection in individuals with diabetes compared with non-diabetic individuals.
2Number of individuals with diabetes living in endemic regions.
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of a range of immune defences. Invasion of the respira-

tory epithelium by M. tuberculosis triggers an early

inflammatory response necessary for the rapid recruit-

ment of neutrophils, macrophages, natural killer (NK)

cells and dendritic cells (DC), involved in the initial con-

tainment of infection.25–27 Efficient phagocytosis and

antigen presentation are required for the development of

cell-mediated adaptive responses elicited by CD4+ Th1

cells and CD8+ cytotoxic T cells.28 Effective interaction

between many immune cell populations at sites of infec-

tion, where they form dynamic aggregates known as gran-

ulomas, prevents active disease by containing bacteria and

limiting collateral tissue damage.29 If any of these

immune responses are compromised, reactivation of

latent infection and development of active disease occurs.

Failure to mount a robust immune response to intracellu-

lar bacterial infections may contribute to the increased

susceptibility of individuals with diabetes and their pre-

disposition to developing active disease.

Greater incidence and re-emergence of intracellular

bacterial infections is anticipated as the diabetes epidemic

escalates, increasing the population of susceptible individ-

uals. The significance of this is emphasized in regions

where the high incidence of diabetes is coupled with an

equally high burden of tuberculosis.30 The western Pacific

and Southeast Asia regions shoulder 60% of the burden

of both diabetes and tuberculosis (Table 2). In popula-

tions with a high prevalence of diabetes, 15–25% of active

tuberculosis cases are attributable to diabetes, compara-

tively more than are attributed to other risk factors such

as HIV (Table 3).31 In Mexico, the tuberculosis-attribut-

able fraction due to HIV is just 2%, compared with the

Immunocompetent Immunocompromised

90% Diabetic

27%

46%

29%

20%

18%

10%

90%

15%Lower lung

Clinical Features

Cavitary lesions

Extrapulmonary

Relapse

Death

31%

16%

5%

8%

Non-diabetic

10-20% lifetime risk
Reactivation

10%

10% annual risk

Exposure 
to Mtb

Latent
infection

Active 
infection

Host
Susceptibility

Figure 1. Diabetes is associated with increased progression to active tuberculosis and unfavourable clinical outcomes. Following exposure to

Mycobacterium tuberculosis (Mtb), immunocompetent hosts predominantly develop latent infection (90%), with only 10% developing active

tuberculosis (blue arrows).160 This is reversed in immunocompromised hosts, such as individuals with diabetes, who predominantly develop

active infection (red arrows).160 In immunocompromised hosts, the annual risk of reactivation of latent tuberculosis exceeds 10%, compared with

a lifetime risk of only 10–20% in immunocompetent hosts.161 Along with a predisposition for developing active disease, more unfavourable

outcomes of tuberculosis, including lower lung involvement, cavitary lesions, extrapulmonary disease, relapse and death, are associated with

co-morbid diabetes.20

Table 2. Regional prevalence of diabetes and tuberculosis

WHO

regions

Prevalence of

diabetes (2013)

Incidence of

tuberculosis (2012)

Millions % Millions %

WPR 138 36�1 2�4 20�2
SEA 72 18�8 4�8 40�3
AMR 61 16�0 0�4 3�4
EUR 56 14�7 0�5 4�2
EMR 35 9�2 1�1 9�2
AFR 20 5�2 2�7 22�7
Total 382 – 11�9 –

WPR, Western Pacific Region; SEA, Southeast Asia Region; AMR,

American Region; EUR, European Region; EMR, Eastern Mediterra-

nean Region; AFR, African Region.

Data sourced from the International Diabetes Federation and World

Health Organization.2,13

Table 3. Most significant risk factors for tuberculosis

Risk factors

Relative

risk

Population

at risk

(millions)

Population

attributable

fraction (%) References

Diabetes 3 382 15–25 2,14,31,32,

118,140

HIV/AIDS 20–37 35 13 13,118,

146–148

Malnutrition 12�4 842 Unknown 147,149
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25% attributed to diabetes.32 Meanwhile, a recent study

in India has found that up to 50% of patients with tuber-

culosis either had diabetes (25�3%) or were in a pre-dia-

betic state (24�5%).33 Despite emphasis being placed on

tuberculosis and HIV co-infection, the burden of tubercu-

losis attributed to diabetes is of equal or greater concern

in many regions due to the increasing global prevalence

of diabetes.22 While the increasing rate of melioidosis

over the past two decades has been attributed in part to

improved diagnostic capabilities, it is likely that coincid-

ing increases in the prevalence of diabetes in endemic

regions is also a contributing factor.16 Increased travel to

and from endemic regions also increases the risk of infec-

tion in those residing in other geographical locations and

facilitates the global spread of infectious diseases. Com-

bined with the increasing incidence of diabetes, there is

an overwhelming need for further research to understand

the immunological mechanisms linking diabetes and

intracellular bacterial infections.

Chronic inflammation in diabetes contributes to
immune dysregulation

Diabetes is a multifactorial metabolic disease, character-

ized by insulin resistance, glucose intolerance and overt

hyperglycaemia. This review is focused on type 2 diabetes,

which is aetiologically distinct from other types of diabe-

tes and is closely related to the concurrent global epi-

demic of obesity.34 The aetiology involves a complex

interplay between genetic and environmental factors that

predispose to insulin resistance and higher circulating lev-

els of blood glucose and free fatty acids (FFA; Fig. 2).

Alterations in glucose and lipid metabolism in adipocytes

and hepatocytes lead to a progressively pro-inflammatory

state characterized by expanding populations of classically

activated (M1) macrophages (Fig. 2).35 Pancreatic beta

cell stress, as a result of metabolic and inflammatory

changes, leads to increasing insulin deficiency and hyper-

glycaemia.36,37 Chronic hyperglycaemia accelerates the

formation of advanced glycation end products (AGE)

produced by non-enzymatic protein glycation.38 Increased

levels of AGE and FFA (derived from excessive dietary

intake and increased lipolysis secondary to insulin resis-

tance) stimulate production of inflammatory mediators

and reactive oxygen species (ROS).38–42 Diabetes-induced

ROS formation also occurs from excessive glucose metab-

olism via oxidative phosphorylation.43

In healthy individuals, production of ROS is balanced

by an increase in antioxidant activity, primarily mediated

by glutathione, the most abundant redox regulator in

eukaryotic cells. Glutathione neutralizes ROS by cycling

between reduced (GSH) and oxidized (GSSG) states. A

decrease in the ratio of GSH : GSSG is indicative of oxi-

dative stress and has been described in patients with

poorly controlled diabetes.44,45 This may be directly

attributed to the increased production of ROS or indi-

rectly through NADPH consumption. NADPH, which is

consumed in the polyol pathway for glucose metabolism

under hyperglycaemic conditions, is a co-factor required

for regeneration of GSH. Deficiency in the availability of

GSH precursors (cysteine and glycine) has also been doc-

umented in diabetes, together with decreased activity of

c-glutamylcysteine synthetase, the rate-limiting enzyme

responsible for GSH synthesis.45,46 There is strong clinical

evidence that elevated activity of c-glutamyl transferase,

involved in the extracellular catabolism of GSH, is also

correlated with diabetes.47 Therefore, both consumption

and impaired biosynthesis of GSH resulting from altered

activity of multiple enzymes may contribute to increased

oxidative stress and the exacerbation of chronic inflam-

matory processes in diabetes.

It is now widely accepted that obesity, particularly excess

visceral adipose tissue, is characterized by a chronic state of

low-grade inflammation due to the secretion of pro-

inflammatory cytokines by stressed adipocytes and adipose

tissue macrophages.48–51 Over-expression of tumour necro-

sis factor-a (TNF-a) in obese adipose tissue was the semi-

nal finding that linked metabolic changes to inflammation

and has since been determined as a key feature mediating

insulin resistance.52–55 Pro-inflammatory M1 macrophages

are recruited to adipose tissue where they secrete high levels

of inflammatory mediators, including TNF-a, C-reactive
protein (CRP), interleukin-1b (IL-1b), IL-6, IL-8 and IL-

12, as reviewed by Donath and Shoelson (Table 4).56 Ele-

vated expression of interferon-c (IFN-c) in adipose tissue

may also play a role in insulin resistance, contributing to

the shift from anti-inflammatory (M2) macrophages to the

pro-inflammatory M1 subset.57 Increased baseline secretion

of TNF-a, IL-6 and IL-8 by neutrophils and monocytes

from diabetic individuals has also been described in vi-

tro.58,59 It is proposed that immune activation and systemic

spillover of pro-inflammatory cytokines is central to the

development of insulin resistance and drives the micro-

and macro-vascular changes observed in diabetes.60–62

Effect of diabetes on the early immune response
to intracellular bacterial infections

Neutrophils

The role of neutrophils in the host immune response

to intracellular bacterial infections is still widely

debated. As one of the first phagocytic cells to reach

sites of infection, neutrophils are adept at destroying

invading pathogens through rapid release of ROS and

pre-formed proteolytic granules.63 Clinically, neutrophils

are the predominant infected cell type in sputum and

bronchoalveolar lavage of patients with active tubercu-

losis.64 There is disparity between the results of in vitro

studies regarding the ability of neutrophils to kill
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M. tuberculosis and B. pseudomallei, probably attribut-

able to both host-specific and organism-specific factors

in addition to variability in experimental design.65–67 In

experimental animal models, neutrophils are rapidly

recruited to sites of infection where they contribute to

early defence against M. tuberculosis and B. pseudomallei

(Table 4).27,68 Neutrophil activation by M. tuberculosis

influences the host immune response through regulation

of surface receptor expression and secretion of chemo-

kines and cytokines to facilitate early leucocyte migra-

tion (Table 4).27,40,69 However, while neutrophils may

have a beneficial role in the early containment of bac-

teria, neutrophils harbouring M. tuberculosis may delay

the clearance of bacteria during chronic tuberculosis.70–

73 This is consistent with the reduced bacterial loads

observed following depletion of neutrophils in animal

models of chronic tuberculosis.64,72 Therefore, the role

of neutrophils may largely depend on the stage of

infection and their capacity to respond appropriately

depending on the virulence of bacteria.

Increased production of inflammatory cytokines and

ROS by unstimulated neutrophils has been described in

diabetics (Table 4), and attributed to direct activation by

AGE.4,41,74 However, neutrophil responses to infection

appear to be predominantly suppressed in diabetic

hosts.75 Decreased pathogen-stimulated ROS production

may be related to impaired glucose metabolism through

the pentose-phosphate pathway, which produces

NADPH, a requirement for optimal NADPH oxidase

activity.75 Furthermore, impaired activity of glutathione

Beta cellsLeucocytesHepatocytesAdipocytes

IR, FFA, TNF-α, 
CCL2, IL-6, IFN-γ

Lipid accumulation, 

IR, TNF-α, CCL2,
gluconeogenesis

CCL2, TNF-α, IL-1β, IL-6, IFN-γ IR, IL-1β 

Insulin

IL-10, IL-4

M1 M2
TregCTLTh17Th1

M1

Th17 Th1

CTL

-

M1

Environmental Genetic

Glucose

Free fatty acids

Dietary intake
Physical activity

Ethnicity
Familial

M1

Liver

Pancreas

Adipose Tissue

Hepatic steatosis
Inflammation  
Oxidative stress
Insulin resistance
Gluconeogenesis

Inflammation and oxidative stress
Beta cell exhaustion and necrosis
Impaired insulin secretion

Adipose tissue expansion
Adipocyte hypertrophy
Local tissue hypoxia
Inflammation
Oxidative stress
Adipocyte necrosis 

Organ Dysfunction Risk Factors

Cellular Dysfunction

Figure 2. The aetiopathogenic mechanisms of type 2 diabetes. Excessive dietary consumption of refined carbohydrates and saturated fatty acids,

combined with genetic predisposition, leads to dysregulation of glucose and lipid homeostasis. This is associated with metabolic abnormalities,

including increasing insulin resistance, lipolysis and hepatic gluconeogenesis, that further contribute to circulating levels of glucose and free fatty

acids (FFA) and affect the function of multiple organ systems.156 Inflammation and oxidative stress induced by excessive FFA and formation of

advanced glycation end products (AGE) leads to recruitment of pro-inflammatory (M1) macrophages, CD4+ T-helper type 1 (Th1) and type 17

(Th17) cells and CD8+ cytotoxic T cells (CTL), whereas anti-inflammatory (M2) macrophages, CD4+ T-helper type 2 (Th2) and regulatory T

(Treg) cells are down-regulated. This systemic chronic inflammation exacerbates insulin resistance, beta cell injury and diabetic complications.

CCL2, chemokine CC motif ligand 2; FFA, free fatty acids; IFN-c, interferon-c; IL-1b, interleukin-1b; IL-6, interleukin-6; IR, insulin resistance;

TNF-a, tumour necrosis factor-a.
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reductase, which also regulates neutrophil-based ROS

production and phagocytosis, may be a contributing fac-

tor to neutrophil dysfunction in diabetic hosts.76 In addi-

tion to killing bacteria directly, ROS stimulates the

release of neutrophil extracellular traps (NET), another

important bactericidal mechanism. Such defects in neu-

trophil function may favour the ability of intracellular

bacteria to ‘hijack’ neutrophils as a means of refuge and

dissemination in diabetic hosts.70

Diabetes-induced functional defects in neutrophil

responses to B. pseudomallei include impairments in phago-

cytosis, bacterial killing, neutrophil migration, cytokine pro-

duction, apoptosis and NET formation.77–79 Diabetes was

also associated with attenuated lipopolysaccharide-induced

Table 4. Effect of tuberculosis and diabetes on innate immune cell function

Cell type Function during infection Effect of tuberculosis Effect of diabetes References

Neutrophils Phagocytosis

Bactericidal activity

Acute inflammatory

response

Removal of microbes

and dead tissue

Promote M1 polarization

↑ Neutrophils

↑ TNF-a, IL-8, IL-17,
CXCL9, ROS, defensins

↑ Neutrophils

↑ TNF-a, IL-6, IL-8, IL-17,
CCL2, ROS

↓ NOx, CXCR2, chemotaxis

27,41,59,65,67,74

Type 1 (M1)

macrophages

Classically activated,

proinflammatory responses

Bacterial, protozoa and

viral defence

Antigen presentation and

T cell activation

↑ M1

↑ TNF- a, IL-1b, IL-6,
IL-8, IL-12, IL-23, CCL2,

NOx, ROS

↑ M1

↑ TNF-a, IL-1, IL-1b, IL-6, IL-8,
IL-12, IL-23, CCL2, ROS, MMP-9

↓ NOx

86–90,94

Type 2 (M2)

macrophages

Alternatively activated,

anti-inflammatory responses

Antagonise M1 responses

Wound healing/fibrosis

↑↓ M2

↑ TGF-b, MMP-12

↑↓ IL-10

↓ M2

↑↓ IL-10

150–154

Natural killer

(NK) cells

Defence against intracellular

pathogens

Contain intracellular

infections prior to adaptive

response

Release cytotoxic granules

Induce apoptosis of

infected cells

Antibody dependent cellular

cytotoxicity

↑ NK

↑ IFN-c, TNF-a, IL-22,
ICAM-1, Th1 response

↑↓ NK

↑ TNF-a, IL-8, IL-22, CCL2
↑/– IFN-c

25,100,101,104,

105,155

Natural killer

T (NKT) cells

Shared properties of NK and

T cells for regulation of

immunity

Respond to lipid antigens

Cytokines promote either

inflammation or tolerance

May have cytotoxic functions

↑ NKT

↑ IFN-c, TNF-a, GM-CSF,

DC maturation, CTL response

↑↓ IL-4, IL-10

↑↓ NKT

↑ IFN-c, TNF-a; ↑↓ IL-10

↓ IL-4

104,106–110

Dendritic

cells (DC)

Antigen presentation

Phagocytic when immature

Antigen uptake and presentation

T cell activation

Initiate adaptive immune response

Link between innate and

adaptive immunity

↑ DC

↑ DC migration

↑ Antigen presentation

↑ TNF-a, IL-1b, IL-6, IL-12,
IL-18, IL-23, IL-27, TGF-b

↑↓ DC

↑ TNF-a, IL-1b, IL-6, IL-12,
IL-23, GM-CSF

88,111–113,156

↑, increased; ↓, reduced; ↑↓, increased or reduced (conflicting evidence); –, no change; CCL2, chemokine CC motif ligand 2; CTL, cytotoxic T

cells; CXCL9, chemokine C-X-C motif ligand 9; CXCR2, chemokine C-X-C motif receptor 2; GM-CSF, granulocyte macrophage colony-stimulat-

ing factor; ICAM-1, intercellular adhesion molecule 1; IL-1b, interleukin-1b; IL-4, interleukin-4; IL-6, interleukin-6; IL-8, interleukin-8; IL-10,
interleukin-10; IL-12, interleukin-12; IL-18, interleukin-18; IL-22, interleukin-22; IL-23, interleukin-23; IL-27, interleukin-27; IFN-c, interferon-c;
MMP-9, matrix metalloproteinase-9; NOx, mono-nitrogen oxides; TGF-b, transforming growth factor-b; TNF-a, tumour necrosis factor-a; ROS,

reactive oxygen species.
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cytokine responses, coinciding with reduced up-regulation

of vascular cell adhesion molecule 1 and intercellular

adhesion molecule 1, required for leucocyte transmigra-

tion into tissue.80 Impaired neutrophil transendothelial

migration and production of ROS have been attributed to

changes caused by activation of the receptor for AGE.41

The combination of these processes may down-regulate

recruitment of phagocytes during the early inflammatory

process and impair initial control of bacterial growth.

Conversely, increased production of inflammatory cyto-

kines after neutrophil stimulation has also been docu-

mented in diabetes.4,66 Differences in experimental

design, infective dose and length of co-culture may

account for such discrepancies. Human studies have the

added confounding influence of variability in the level of

hyperglycaemic control and the use of hypoglycaemic

agents, which in many cases are not explicitly defined and

may have important immunomodulatory effects. Exces-

sive neutrophil involvement is a significant cause of

immunopathology in chronic intracellular bacterial infec-

tions and this may be exacerbated by the pro-inflamma-

tory milieu involved in driving diabetic complications.

Macrophages

Macrophages play a critical role in providing early host

defence against intracellular bacterial infections. Important

effector functions of macrophages include the phagocyto-

sis of bacteria and clearance of apoptotic and necrotic

neutrophils to contain infection. Recruitment and activa-

tion of circulating monocytes to sites of infection, where

they differentiate into macrophages, are facilitated by neu-

trophil-derived cytokines and chemokines, such as TNF-a
and CCL2.69 In addition to phagocytic and antibacterial

mechanisms, the cytokine profile of macrophages is crucial

for driving effective cell-mediated immunity and protec-

tion against intracellular bacteria. M1 macrophage polari-

zation in response to intracellular bacterial infections

induces up-regulation of co-stimulatory molecules, induc-

ible nitric oxide synthase and inflammatory cytokines,

including TNF-a, IL-12 and IL-18. Production of IL-12

and IL-18 is essential for eliciting an IFN-c response from

NK cells and T cells in the establishment of T helper type

1 (Th1) cell-mediated immunity.81 Both IFN-c and TNF-a
activate macrophages and promote killing of intracellular

bacteria by stimulating inducible nitric oxide synthase and

NADPH oxidase, as recently reviewed by MacMicking.82

Clinical and experimental studies have confirmed the

importance of IFN-c and TNF-a in the control of

M. tuberculosis infection.81,83,84 However, excessive cyto-

kine production may contribute to tissue damage, espe-

cially if chronically elevated by an unresolved infection.85

Therefore, the inflammatory response requires precise reg-

ulation to achieve this balance between protection and

injury.

Activated inflammatory macrophages are closely linked

to many diabetic complications through the generation of

significant levels of pro-inflammatory cytokines and ROS

(Table 4).86,87 While inflammatory cytokine production by

unstimulated macrophages is higher in individuals with

diabetes, infection-induced cytokine production tends to

be impaired compared with non-diabetic individuals.88,89

This may be associated with reduced macrophage migra-

tion to sites of infection as suggested by lower levels of

CCL2 in lung lysates in experimental models of diabetes

and tuberculosis.88,89 In addition to impaired recruitment,

clinical and experimental evidence indicates that mono-

cytes from individuals with diabetes have reduced phagocy-

tic and antibacterial activity against M. tuberculosis and

B. pseudomallei in vitro.90–92 Reduced phagocytosis may be

associated with defects in complement factors or receptor

expression required for bacterial opsonization and internal-

ization.90 As well as providing an intracellular niche that

facilitates bacterial persistence, impaired phagocytic and

antibacterial activity of macrophages may have down-

stream effects on the activation of the cell-mediated

immune responses necessary for host protection. Reduced

secretion of IL-12 and IFN-c by peripheral blood mononu-

clear cells from individuals with diabetes has been reported

following stimulation with intracellular bacteria.44 This is

supported by in vivo evidence of lower levels of IL-12, IFN-

c and TNF-a in experimental animal models of diabetes

following acute infection with intracellular bacteria.27,93,94

These diabetes-induced changes in macrophage responses

may contribute to poor containment of intracellular bacte-

ria in the critical early stages of infection and subsequent

alterations in the type of T-cell response initiated.

It has been suggested that immunological dysregulation

associated with diabetes is a direct consequence of

impaired glycaemic control.44,95 The epidemiological data

linking poor glycaemic control to increased risk of active

tuberculosis lends support to this theory.11,96 High glu-

cose concentrations have been shown to inhibit lectin

binding, contributing to poor pathogen recognition and

impaired bacterial phagocytosis in diabetic hosts.95

Reduced immune recognition of intracellular bacteria and

altered cellular interactions potentially facilitate increased

bacterial persistence.95 Phagocytic dysfunction may be

mediated directly through impaired glucose metabolism

or indirectly through increased endoplasmic reticulum

stress and accumulation of misfolded proteins.97,98 These

mechanisms may also contribute to the decreased expres-

sion of cell surface receptors and altered secretion of

cytokines and other immunomodulatory proteins, repre-

senting an area for further research.

Natural killer cells and natural killer T cells

Natural killer cells play an important role in innate

immune responses to pathogens and interest into their
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contribution to protection against intracellular bacterial

infections has gained momentum over the past decade.25

Natural killer cells are regulated by a series of inhibitory

and activating receptors.99 Experimental studies of

M. tuberculosis infection have demonstrated that NK cells

are recruited to sites of infection where they contribute to

IFN-c production and lysis of M. tuberculosis-infected tar-

get cells.99–101 The NK cells also modulate T-cell

responses to M. tuberculosis, favouring Th1 effector func-

tions and contributing to CD8+ T cell-derived IFN-c pro-

duction and cytolytic activity.102 Down-regulation of NK

cell activating receptors in patients with tuberculosis coin-

cides with impaired IFN-c levels and reactivation of dis-

ease.103 Although higher numbers of NK cells have been

documented in patients with diabetes before infection,

decreased expression of activating receptors, NKp46 and

NKG2D, has also been observed.104,105 Impaired activa-

tion of NK cells may dampen IFN-c production and the

cytolytic activity required for the early containment and

killing of intracellular bacteria.105 Given the importance

of NK cells in innate immunity, there is a need for

research to understand the clinical relevance of diabetes-

induced alterations in NK cell function and the direct

effect on intracellular bacterial infections.

Natural killer T (NKT) cells are a unique subset of NK

cells that also possess T-cell receptors. They respond to

glycolipid rather than peptide antigens and have the

potential to augment a range of immune responses.106

There is evidence that NKT cells contribute to host pro-

tection in M. tuberculosis infection by inhibiting intracel-

lular bacterial growth through cytolytic mechanisms,

enhancing maturation and activation of antigen-present-

ing cells (APC) and modulating the type of immune

response generated.106–108 The involvement of NKT cells

in adipose tissue inflammation and glucose intolerance

has been described in experimental models of diabe-

tes.104,109 Increases in NKT cell numbers are observed in

patients with tuberculosis and are higher in the blood

and bronchoalveolar lavage of patients with co-morbid

diabetes than those without.110 This may be a direct con-

sequence of the increased bacillary burden observed in

these patients and has been suggested as a useful marker

for active tuberculosis.110 Whether diabetes causes func-

tional defects in NKT cell activity or otherwise biases the

immunomodulatory response to intracellular bacterial

infections is an area worthy of further research.

Effect of diabetes on antigen presentation
following infection with intracellular bacteria

Dendritic cells

Dendritic cells represent an important link between innate

and adaptive immune responses. Mature DC are potent

immune-modulators and APC for priming specific

lymphocyte responses.26,111 At the onset of infection with

intracellular bacteria, DC accumulate at the site of

infection to participate in bacterial uptake and antigen

processing. Antigen presentation takes place following

migration of mature DC to draining lymph nodes.26,28 Den-

dritic cells also modulate the lymphocyte profile generated

through production of immunoregulatory cytokines, such

as IL-12 and IL-18, essential for effective Th1 cell-mediated

immune clearance of intracellular bacteria.26,28 Suppression

of DC trafficking to lymph nodes has been suggested as a

mechanism by which M. tuberculosis evades the early host

immune response.26 Defects in DC maturation, migration

and interaction with T cells may also contribute to intracel-

lular bacterial persistence within the host.26

Increased expression of activation markers on unstimu-

lated DC from diabetic individuals has been docu-

mented.112,113 Despite efficient trafficking of DC to

regional lymph nodes, an initial delay in the recruitment of

myeloid cells to the pulmonary site of infection was

observed in diabetic mice following infection with

M. tuberculosis.88 This coincided with reduced levels of

CCL2 and CCL5, chemokines involved in the recruitment

of macrophages and DC.88 Reduced early recruitment of

APC to the primary site of infection may account for

delayed induction of protective T-cell-mediated immune

responses.114 In an experimental animal model of diabetes,

DC phagocytosis of intracellular bacteria was also

impaired.91 However, there were no differences in the up-

regulation of DC markers involved in antigen presentation

and co-stimulation of naive T cells. Impaired phagocytosis

and delayed kinetics of antigen presentation at the onset of

infection potentially contributes to poor early control and

downstream alterations in lymphocyte activation.

Increased oxidative stress in diabetic hosts may also

influence the profile of cytokines secreted by APC during

intracellular bacterial infections. The reduced intracellular

GSH : GSSG ratio in APC from diabetic individuals

alters the secreted cytokine profile due to the immuno-

modulatory properties of GSH.115–117 Consistent with

this, peripheral blood mononuclear cells from patients

with poorly controlled diabetes had defects in IL-12 pro-

duction in response to intracellular bacterial infection,

which could be reversed by replenishing GSH levels.44

The exact mechanisms by which GSH influences IL-12

production are under investigation but may involve the

modulation of intracellular redox status and glutathiony-

lation of signalling intermediates or transcription fac-

tors.44 The therapeutic potential of agents that together

improve the IL-12/IFN-c axis and decrease oxidative

stress represents an exciting avenue to pursue.

T-cell-mediated immunity is critical to host protection

against intracellular bacterial infections. Diabetes-induced

alterations in the immunomodulatory nature of DC may

influence the type of T-cell response elicited, which is an

important determinant in the long-term outcome of
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intracellular bacterial infections. Effective antigen presenta-

tion in secondary lymphoid organs, together with early secre-

tion of IL-12 and IFN-c, is essential for the priming and

differentiation of Th1 cells involved in host protection.

Development of active pulmonary or extrapulmonary tuber-

culosis, a common finding in those with co-morbid diabetes

(Fig. 1), has been linked to impairments in Th1 cell-medi-

ated immunity.20,118,119 Potential alterations in the develop-

ment of specific T-cell responses may be a secondary

complication of the diabetes-induced innate immune defects

already described (Fig. 3). In an experimental model of co-

morbid tuberculosis and diabetes, reduced levels of chemo-

kines and cytokines were associated with delayed priming of

T cells.88,114 This was followed by a higher pulmonary

M. tuberculosis burden and an exaggerated inflammatory

response during the latter stages of infection after specific

adaptive immunity was established (Fig. 3).88,114

Effect of diabetes on the adaptive immune
response to intracellular bacterial infections

Lymphocytes

Host protection against intracellular bacterial infections

relies on a strong T-cell-mediated response.120 T cells dif-

ferentiate into a range of subtypes (Th1, Th2, Th17,

Treg), which elicit distinct types of immunity

fundamentally based on secreted cytokine profiles. An

early influx of IFN-c-producing Th1 cells is a significant

determinant of protection against intracellular bacterial

infections.121 There is strong evidence to indicate an ini-

tial delay in activation of Th1 cell-mediated immunity in

diabetic hosts.44,88,114 However, there is also clinical and

experimental evidence that the late inflammatory response

during chronic tuberculosis is enhanced (Table 5),

although it may come too late to rescue diabetic hosts

from bacterial dissemination.122,123 It is possible that this

late hyper-inflammatory response is a direct result of

increased antigenic stimulus, as a consequence of

impaired innate immune control, or a cumulative build-

up adding to the chronic inflammation underlying the

immunopathology of diabetes itself.124 Increased circulat-

ing levels of Th1- and Th17-associated cytokines have

been described in patients with tuberculosis and co-mor-

bid diabetes.125 In vitro stimulation of whole blood with

M. tuberculosis antigens resulted in elevated frequencies of

CD4+ Th1 cells and Th17 cell subsets.122 However, lower

production of IFN-c by CD4+ T cells from patients with

tuberculosis and poorly controlled diabetes has also been

documented, consistent with reduced expression of IL-12
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Figure 3. Putative immune mechanisms contributing to the increased susceptibility of diabetic hosts to Mycobacterium tuberculosis. Invasion of

the respiratory epithelium by M. tuberculosis triggers an early inflammatory response necessary for the rapid recruitment of neutrophils, macro-

phages and dendritic cells (DC) to sites of infection. However, defects in bacterial recognition, phagocytic activity and cellular activation lead to

impaired production of chemokines and cytokines (CCL2, tumour necrosis factor-a, interleukin-1b, IL-12) in diabetic hosts. Altered activation of

natural killer (NK) cells, an important early source of interferon-c (IFN-c) to enhance macrophage microbicidal activity, may also facilitate intra-

cellular bacterial persistence. The initiation of adaptive immunity is delayed by impaired antigen-presenting cell (APC) recruitment and function

in diabetic hosts and dysregulation of the cytokine profile alters the activation and differentiation of T-cell subsets. B-cell activation and antibody

production may also be impaired. The dysregulated inflammatory milieu due to the involvement of different T-cell subsets and impaired killing

of intracellular bacteria potentially affects granuloma formation, contributing to increased neutrophil recruitment and central necrosis that facili-

tates bacterial escape.
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by APC.44,126 The inconsistencies between findings may

be attributed to differences in study design and cell cul-

ture, including the absence of additional leucocyte inter-

actions and removal from hyperglycaemic conditions.

Furthermore, the Th1 response in diabetic hosts may

have limited efficacy because of impaired cellular interac-

tions and an inability to mount an effective antibacterial

response, leading to intracellular bacterial persistence.

There is still a paucity of research on the role of other

T-cell subsets in co-morbid diabetes and intracellular bac-

terial infections. While Th1-mediated immunity plays a

crucial role in host protection against intracellular bacte-

ria, the functional significance of Th17 responses is less

clear.127 Experimental evidence indicates that Th17

responses may facilitate dissemination of M. tuberculosis,

potentially through IL-17 secretion and its role in neutro-

phil recruitment.128 Bacterial dissemination may be fur-

ther exacerbated by the functional defects in neutrophil

and macrophage bactericidal mechanisms described in

diabetic hosts. Without appropriate regulation, exagger-

ated Th17 responses may also contribute to immune-

mediated pathology.129

Table 5. Effect of tuberculosis and diabetes on lymphocyte responses

Cell type Function during infection Effect of tuberculosis Effect of diabetes References

T-helper 1

(Th1) cells

Cell-mediated immune response

Target intracellular pathogens

Microbial defence

Macrophage activation

CTL proliferation

↑ Th1

↑ IFN-c, TNF-a, IL-2, NO, LT-a
↑↓ IL-10

↑ Th1

↑ IFN-c, IL-2, TNF-a
↑↓ IL-10

↓ NOx

121,124–126,131

T-helper 2

(Th2) cells

Humoral immune response

Assist B cells

Ig isotype switching

Extracellular pathogen defence

Stimulate M2

Eosinophil activation

Mast cell activation

↑↓ Th2

↑ TGF-b
↑↓ IL4, IL-10

↓ IL-5

↓ Th2

↑↓ IL-10

↓ IL-4

120,122,124,131

T-helper 17

(Th17) cells

Defence against fungi and

extracellular bacteria

Enhance neutrophil response

Stimulate resident cells to

secrete chemokines

Recruit neutrophils and

macrophages to sites of

inflammation

↑ Th17

↑ TNF-a, IL-17, IL-22, CXCL9,
CXCL10, CXCL11

↑ Th17

↑ IL-17, IL-22

124,125,127,128

Regulatory T

(Treg) cells

Suppress and regulate

immune responses

Decrease immune-mediated

damage

Cytokines inhibit effector

T cells and APC

Prevent pro-inflammatory

cytokine secretion

↑ Treg

↑ TGF-b
↑↓ IL-10

↓ Treg

↑ IFN-c
↑↓ IL-10

119,120,124,125

Cytotoxic T

cells (CTL)

Lysis of infected cells

Targets viruses and

intracellular bacteria

Release of cytolytic granules

Induce apoptosis of target cells

↑ CTL

↑ IFN-c, TNF-a, perforin,
granulysin

↑ CTL

↑ IFN-c, TNF-a
121,157–159

B cells Humoral immune response

Antibody production

Differentiation into plasma cells

Antigen presentation to T cells

Immune modulation

↑ B cells

↑ IFN-c, TNF-a, IL-6, IL-12,
IgG, IgG1

↑↓ IL-4, IL-10

↑ B cells

↑ IFN-c, TNF-a, IL-6,
IL-12, IgG2c

↑↓ IL-10

↓ Ig production

132–134

↑, increased; ↓, reduced; ↑↓, increased or reduced (conflicting evidence); APC, antigen-presenting cells; CXCL10, chemokine C-X-C motif ligand

10; CXCL11, chemokine C-X-C motif ligand 11; Ig, immunoglobulin; IL-2, interleukin-2; IFN-c, interferon-c; LT-a, lymphotoxin-a; NOx, mono-

nitrogen oxides; TGF-b, transforming growth factor-b; TNF-a, tumour necrosis factor-a.
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Regulatory T (Treg) cells are critical for preventing

exaggerated inflammatory responses to limit host tissue

damage, although this may also limit host immunity and

pathogen clearance.130 In experimental models of tuber-

culosis, Treg cells impair immune protection by delaying

recruitment of effector CD4+ and CD8+ T cells to sites of

infection.130 The Th2-mediated responses are also corre-

lated with increased susceptibility to intracellular bacterial

infections.131 Decreased numbers of Treg and Th2 cells

are an underlying feature of diabetes.119,120,122 Interest-

ingly, elevated systemic levels of immunosuppressive Treg

and Th2-type cytokines, IL-10, TGF-b and IL-4, and an

overall lower Th1 : Th2 ratio have been documented in

patients with tuberculosis and diabetes.122,131 This may

contribute to susceptibility in diabetic hosts by abrogating

the protective mechanisms afforded by Th1-type cyto-

kines and enhancing intracellular bacterial persistence.131

The diabetes-induced dysregulation of T-cell responses to

intracellular bacteria is no doubt complex and requires

further clarification.

While T-cell activity is critical to the protective

immune response to intracellular bacterial infections, the

definitive role of B cells is still debated.132 Until recently,

B cells were generally considered to be of little benefit

during intracellular bacterial infections, given the limited

protection afforded by humoral immunity in general.

However, it is now appreciated that B cells are present in

tuberculosis granulomas in active follicle-like centres,

where they influence local inflammatory responses

(Table 5).133 In particular, B cells have a newly defined

role in regulating neutrophil migration to the site of

infection. Neutrophilia is a compensatory response to B-

cell deficiency during M. tuberculosis infection.133 Hyper-

glycaemia-induced functional defects in B cells have been

described in vitro, specifically resulting in impaired

immunoglobulin production, although the clinical rele-

vance of this remains to be shown.134 Whether diabetes

also delays the kinetics of B-cell activation and how this

may influence the immunoregulatory role of B cells

remains to be discerned. In this respect, defects in B-cell

function in diabetic hosts may have significant immuno-

modulatory consequences on the functional response of

other leucocytes, although this is yet to be determined.

Granuloma formation

When absolute bacterial clearance cannot be achieved,

dynamic cellular interactions at sites of infection lead to

the formation of granulomas, a characteristic feature of

tuberculosis. Granulomas depend on the organized and

complex interaction of many immune cell populations,

including macrophages, DC and T and B cells, as recently

reviewed by Guirado and Schlesinger.135 The precise bal-

ance and kinetics of cytokine and chemokine production

and appropriate cellular function are necessary for proper

granuloma formation.29,136 For the past decade, granulomas

were primarily considered a protective mechanism,

providing a barrier against bacterial dissemination and

containing inflammatory processes to limit collateral tis-

sue damage.137 However, cavitary granulomatous lesions

can increase bacterial dissemination and are associated

with destruction of lung parenchyma.138

The influence of diabetes on granuloma formation in

tuberculosis is not well understood. Clinical observations

of an increased frequency of cavitary lung lesions in

patients with tuberculosis and co-morbid diabetes may

indicate alterations in granuloma formation.20,32 Larger

granulomas were also observed in an experimental model

of diabetes and tuberculosis.27 This coincided with

reduced production of TNF-a, IL-12 and nitric oxide by

alveolar macrophages.27 Up-regulation of IFN-c and

TNF-a is critical for control of M. tuberculosis infection

and in facilitating appropriate granuloma forma-

tion.81,83,84,136 It is possible that delayed pulmonary

migration of macrophages, DC and activated T cells,

caused by reduced CCL2 and CCL5, also contributes to

altered structural organization of granulomas in individu-

als with co-morbid diabetes. Cavitary lesions are associ-

ated with increased degenerative macrophages and

infiltration of neutrophils, which is typical of mice lack-

ing IFN-c, TNF-a and CCL2.101,139 Activated macrophag-

es play a pivotal role in containment of bacilli within the

granuloma, so incomplete macrophage activation or

impaired microbicidal mechanisms in diabetes may con-

tribute to M. tuberculosis escape and increased dissemina-

tion.

Future perspective

The double burden of diabetes and intracellular bacterial

infections represents a significant global challenge. Cur-

rently, diagnostic and therapeutic research predominantly

uses non-diabetic models and the translatability of this to

individuals with diabetes is questionable given the appar-

ent differences in immune responses and disease mecha-

nisms. Although the underlying immunopathology of

diabetes is no doubt complex, there is strong clinical and

experimental evidence that a delay in inflammatory sig-

nals of the innate immune system is followed by altered

development of appropriate protective responses against

intracellular bacterial infections. While improving glucose

control may benefit patients with intracellular infections

and co-morbid diabetes, it is likely that the complex im-

munopathogenesis underlying diabetes will need to be

addressed by a more multifactorial therapeutic approach.

Understanding the mechanisms underlying co-morbidities

like diabetes, which dramatically influence the progression

of intracellular bacterial infections, will facilitate improve-

ments in the treatment and management of disease in

susceptible populations. Novel, affordable strategies are
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urgently required, particularly for low- to middle-income

countries where the convergence of non-communicable

and communicable diseases is unprecedented. Given the

ongoing and widespread acceleration of non-communica-

ble diseases, a multidisciplinary approach to research will

be vital in addressing current and future challenges of the

emerging double burden of co-morbid intracellular bacte-

rial infections.
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